Planibel G

Planibel G is a versatile low-emissivity glass that’s perfect for enhancing your home’s comfort and energy efficiency.

Ideal for both residential buildings and household appliances, Planibel G’s durability is unmatched. Thanks to its advanced pyrolytic production, this glass boasts high scratch resistance and an unlimited shelf life, ensuring your investment lasts for years to come. Plus, it’s easy to work with, making installation and maintenance a breeze.

When used in a double glazed unit, Planibel G offers improved performance, providing better insulation and energy efficiency.

Exploring The Benefits

Energy Efficiency

Keep the temperature of your room controlled, lowering your energy consumption and reducing the need for additional heating and cooling.

Low E Coating

Coating is applied that allows natural light through without emitting radiant heat, maximising light and energy efficiency.

Climate

Designed with a consideration for mixed and warmer climates or where mid-range solar control and insulation are desired.

DGU Application

Our DGU Pro range allows Planibel G to be used in a double-glazed unit. For optimized performance, we recommend exploring DGU Premium and DGU Max.

Easy Processing

Can be toughened, laminated, curved or used in DGU Pro. 

Performance Data

  • Calculation method: LBNL WINDOW Calc Engine v2.4.0, Optics 6.0
  • Environmental Condition: NFRC 100-2000
  • Results are for center-of-glass; does not include effect of frames
  • Location of LowE coating is indicated with surface number
    • #1 indicates exterior surface, #4 indicates the interior surface in a typical double-glazed unit
key2
Tilt

Tilt-angle (°)

Angle of the glass relative to the horizon

  • Typical skylights with a slight pitch: 3-5°
  • Typical windows in vertical walls: 90°
Ug.w

Ug (W/m².K)

Heat-transfer coefficient (center-of-glass)

  • Heat transfer (W) per square meter (m²) of glass for each degree (C) of temperature difference
  • Lower implies better insulation

.w

NFRC 100-2010 Winter Condition

  • The standard environmental condition for Ug quoted in the Window industry
  • Useful as a reference for performance comparison between different glazing systems but can lead to inaccuracies if used to estimate energy consumption
  • Inside Condition:
    • Air and effective room temperature: 21 deg C
    • Room emissivity: 1
  • Outside Condition:
    • Air and effective sky temperature: -18 deg C
    • Effective sky emissivity: 1
    • Convection coefficient: 26 W/m².K
    • Wind speed: 5.5m/s windward
Ug.s

Ug (W/m².K)

Heat-transfer coefficient (center-of-glass)

  • Heat transfer (W) per square meter (m²) of glass for each degree (C) of temperature difference
  • Lower implies better insulation

.s

NFRC 100-2010 Summer Condition

  • The condition used to calculate SHGC
  • Ug.s better represents performance in warm environmental conditions
  • Inside Condition:
    • Air and effective room temperature: 24 deg C
    • Room emissivity: 1
  • Outside Condition:
    • Air and effective sky temperature: 32 deg C
    • Effective sky emissivity: 1
    • Convection coefficient: 15 W/m².K
    • Wind speed: 2.75m/s windward
    • Direct solar radiation: 783W/m²
SHGC

SHGC (Range: 0 – 1)

Solar heat gain coefficient

  • Proportion of solar heat radiation transmitted
  • Generally lower SHGC is desirable for north and west facing windows for reducing air-conditioning cost in summer
  • However, higher SHGC for north and west facing windows would help reduce heating cost in winter
VLT

VLT (Range: 0 – 1)

Visible light transmittance

  • Proportion of visible light (380 - 720nm) transmitted
  • Generally higher VLT is more desirable
VLRf

VLRf (Range: 0 – 1)

Front Visible light reflectance

  • Proportion of visible light reflected on the external side of the IGU
VLRb

VLRb (Range: 0 – 1)

Back Visible light reflectance

  • Proportion of visible light reflected on the room side of the IGU
Tdw

Tdw-ISO (Range: 0 – 1)

Damage weighted transmittance

  • Proportion of colour fading radiation transmitted
  • Lower Tdw-ISO means lower risk of colour fading
  • Accounts for the colour fading potential of both UV and visible spectrum
Tuv

Tuv (Range: 0 – 1)

UV transmittance

  • Proportion of UV radiation (280 - 380nm) transmitted (Range: 0 – 1)
  • Not recommended as a metric for assessing colour fading potential
  • Visible spectrum could account for as much as 40% of the fading from solar radiation
Sel.

Selectivity (VLT/SHGC)

Ratio of visible light transmittance over solar heat gain coefficient

  • Useful for comparing spectral selectiveness of the low-E coating
  • Higher selectivity means less visible light is sacrificed to lower solar heat gain

Example:

  • Sel. in the 0.5 - 0.8 range results from the use of Grey glass; less visible light is transmitted vs infrared radiation
  • Sel. in the 1.9 - 2.2 range results from the use of LightTech LI Max; less infrared radiation is transmitted vs visible light
rgbhex
Nom.

Nominal thicknesses (mm)

List of nominal thicknesses of the IGU components separated by the '+' symbol

Example:

17.52:

  • 17.52mm single-pane laminated glass

6+12+6:

  • DGU made up of:
    • 6mm glass
    • 12mm spacer
    • 6mm glass
Total.

Total thickness (mm)

Total thickness of the glazing system; sum of component thicknesses

Visual fontcolour
Loading ITables v2.1.4 from the internet... (need help?)

Applications

External
  • Doors
  • Windows
  • Shop Front
  • Roof Glazing
  • Frameless Glazing

*Application information attained from Oceania Glass

Specifications

How to Specify

*Specification information attained from Oceania Glass

Considerations

Things to Consider